Vector Mode Analysis of Optical Waveguides by Quadratic Spline Collocation Method

نویسندگان

  • Jianwei Mu
  • Haibo Liang
  • Xun Li
  • Bin Xu
  • Weiping Huang
چکیده

We present an accurate, efficient numerical analysis for vector modes of dielectric optical waveguide structures with an arbitrary refractive index profile using a quadratic spline collocation method (QSCM). The unknown weights of the polynomials are determined by forcing the errors at the collocation points to be zero. Consequently, the original second order differential equation is converted to a set of algebraic equations which can be solved by matrix techniques. The proposed QSCM method demonstrates better performance than the standard finite-difference method of the same convergence rate in terms of grid size with the same degree of computational complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A spline collocation method for integrating a class of chemical reactor equations

. In this paper, we develop a quadratic spline collocation method for integrating the nonlinear partial differential equations (PDEs) of a plug flow reactor model. The method is proposed in order to be used for the operation of control design and/or numerical simulations. We first present the Crank-Nicolson method to temporally discretize the state variable. Then, we develop and analyze the pro...

متن کامل

Numerical solution of fractional bioheat equation by quadratic spline collocation method

Based on the quadratic spline function, a quadratic spline collocation method is presented for the time fractional bioheat equation governing the process of heat transfer in tissues during the thermal therapy. The corresponding linear system is given. The stability and convergence are analyzed. Some numerical examples are given to demonstrate the efficiency of this method. c ©2016 All rights re...

متن کامل

Minimum Principle for Quadratic Spline Collocation Discretization of a Convection-diffusion Problem

In this paper the quadratic spline difference scheme for a convection-diffusion problem is derived. With the suitable choice of collocation points we provide the discrete minimum principle. The numerical results implies the uniform convergence of order O(n−2 ln n).

متن کامل

Quadratic spline collocation method and efficient preconditioner for the Helmholtz equation with Robbins boundary conditions

Numerical solutions of the Helmholtz equation with Robbins boundary conditions are researched using the quadratic spline collocation method. By reordering the unknowns, we obtain a 2×2 block linear system where the two diagonal sub-matrices are block tridiagonal. For the obtained linear system, we introduce a two-step preconditioner using the block polynomial preconditioner. Theoretical analysi...

متن کامل

On the Formulation and Implementation of Optimal Superconvergent One Step Quadratic Spline Collocation Methods for Elliptic Problems

We formulate new optimal quadratic spline collocation methods for the solution of various elliptic boundary value problems in the unit square. These methods are constructed so that the collocation equations can be solved using a matrix decomposition algorithm. The results of numerical experiments exhibit the expected optimal global accuracy as well as superconvergence phenomena. AMS subject cla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012